關於 naive Bayes
在 machine learning in action 一書中提到了要談 native Bayes 得先了解 conditional probability.
他舉的例子很簡單, 但總老是忘記, 在此記錄.
Total: 7 balls, 2 buckets
[Bucket A] 2 gray, 2 black
[Bucket B] 1 gray, 2 black
conditional probability P(gray|B) 解釋為已知道選 bucket B的條件下, 是 gray的機率. 毫無疑問地, 是1/3. 又
\begin{align*} P(gray|B) = \frac{P(gray \mspace{2pt} and \mspace{2pt} B)}{P(B)} 可理解為 \frac{「是 gray 且是bucket B的機率 」}{「為bucket B的機率」}\end{align*}
只是這樣的解釋一時自己無法理解 P(B), 原來是還是要補上「抽出一顆球」.
P(gray|B): 抽出一顆球, 在已知來自B的條件下, 是gray的機率. 1/3
P(B): 抽出一顆球是來自B的機率. 3/7
P(gray and B): 抽出一顆球, 是gray且來自B的機率 (or 是B中的gray的機率, 或許比較好理解). 1/7
\begin{align*} P(gray|B) = \frac{P(gray \mspace{2pt} and \mspace{2pt} B)}{P(B)} = \frac{1/7}{3/7}=\frac{1}{3}\end{align*}
不過通常要求的不會是 P(gray|B), 而是 P(B|gray).
利用 Bayes Rule (swap the symbol in a conditional probability statement):
\begin{align*} P(gray|B) = \frac{P(B)P(gray|B)}{P(gray)}\end{align*}
\begin{align*} 通式: P(C|x) = \frac{P(C)P(x|C)}{P(x)}\end{align*}
接著改寫先前依據 Bayesian Decision Theory 所提出的分類器:
If p1(x,y) > p2(x,y), then the class is 1 => P(C1|(x,y))
If p2(x,y) > p1(x,y), then the class is 2 => P(C2|(x,y))
因此 Bayesian Classification Rule 可以改寫為:
\begin{align*} 通式: P(C_{i}|x_{1}, ..., x_{n}) = \frac{P(C_{i})P(x_{1}, ..., x_{n}|C_{i})}{P(x_{1}, ..., x_{n})}\end{align*}
to-do next time:
>下次把利用 naive Bayes 作 automatic document classification 的應用記錄一下好了.
===== 20140701 =====
實例(from Machine Learning in Action 一書):
有幾組留言
1) My dog has flea problems, help please.
他舉的例子很簡單, 但總老是忘記, 在此記錄.
Total: 7 balls, 2 buckets
[Bucket A] 2 gray, 2 black
[Bucket B] 1 gray, 2 black
conditional probability P(gray|B) 解釋為已知道選 bucket B的條件下, 是 gray的機率. 毫無疑問地, 是1/3. 又
\begin{align*} P(gray|B) = \frac{P(gray \mspace{2pt} and \mspace{2pt} B)}{P(B)} 可理解為 \frac{「是 gray 且是bucket B的機率 」}{「為bucket B的機率」}\end{align*}
只是這樣的解釋一時自己無法理解 P(B), 原來是還是要補上「抽出一顆球」.
P(gray|B): 抽出一顆球, 在已知來自B的條件下, 是gray的機率. 1/3
P(B): 抽出一顆球是來自B的機率. 3/7
P(gray and B): 抽出一顆球, 是gray且來自B的機率 (or 是B中的gray的機率, 或許比較好理解). 1/7
\begin{align*} P(gray|B) = \frac{P(gray \mspace{2pt} and \mspace{2pt} B)}{P(B)} = \frac{1/7}{3/7}=\frac{1}{3}\end{align*}
不過通常要求的不會是 P(gray|B), 而是 P(B|gray).
利用 Bayes Rule (swap the symbol in a conditional probability statement):
\begin{align*} P(gray|B) = \frac{P(B)P(gray|B)}{P(gray)}\end{align*}
\begin{align*} 通式: P(C|x) = \frac{P(C)P(x|C)}{P(x)}\end{align*}
接著改寫先前依據 Bayesian Decision Theory 所提出的分類器:
If p1(x,y) > p2(x,y), then the class is 1 => P(C1|(x,y))
If p2(x,y) > p1(x,y), then the class is 2 => P(C2|(x,y))
因此 Bayesian Classification Rule 可以改寫為:
\begin{align*} 通式: P(C_{i}|x_{1}, ..., x_{n}) = \frac{P(C_{i})P(x_{1}, ..., x_{n}|C_{i})}{P(x_{1}, ..., x_{n})}\end{align*}
to-do next time:
>下次把利用 naive Bayes 作 automatic document classification 的應用記錄一下好了.
===== 20140701 =====
實例(from Machine Learning in Action 一書):
有幾組留言
1) My dog has flea problems, help please.
2) Maybe not, take him to do park, stupid.
3) My dalmation is so cute, I love him.
4) Stop posting stupid worthless garbage.
5) Mr Licks ate my steak. How to stop him?
6) Quit buying worthless dog food, stupid.
目標:
根據有無 abusive 的字眼, 將留言做分類.
Classifier ( 2 classes here)
Classifier ( 2 classes here)
1: has abusive; 0: no abusive
做法:
0) 手動歸類上面六項留言是否為 abusive. 得到 class labels [ 0 1 0 1 0 1]
1) 將每個留言轉成 token array
2) 取 token arrays 中無重複的 tokens 當作 vocabulary list(features)
3) 針對每個留言檢查 vocabulary list 中的 token 是否存在, 並得到類似 [0110...11] 的vectors (features). 這表示每個留言所包含的 features. ( 1:存在, 0: 不存在 )
--- 到目前已經將 words 轉為 numbers ---
--- 我們已經知道某個word存在一些留言中, 也知道每個留言屬於哪個 class ---
回顧 NBC (Naive Bayesian Classifier)
\begin{align*} 通式: P(C_{i}|x_{1}, ..., x_{n}) = \frac{P(C_{i})P(x_{1}, ..., x_{n}|C_{i})}{P(x_{1}, ..., x_{n})}\end{align*}
翻譯:給定留言, 透過 step(3) 得到的 features vector, 它屬於某 class(i) 的機率.
剩下的參考源碼 https://github.com/ggc2012/ml_nbc.git
Comments
Post a Comment